首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   292篇
  免费   7篇
  国内免费   9篇
测绘学   16篇
大气科学   38篇
地球物理   54篇
地质学   77篇
海洋学   76篇
天文学   36篇
综合类   3篇
自然地理   8篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   4篇
  2019年   5篇
  2018年   17篇
  2017年   14篇
  2016年   29篇
  2015年   11篇
  2014年   20篇
  2013年   38篇
  2012年   8篇
  2011年   18篇
  2010年   16篇
  2009年   17篇
  2008年   8篇
  2007年   13篇
  2006年   14篇
  2005年   7篇
  2004年   13篇
  2003年   11篇
  2002年   4篇
  2001年   4篇
  2000年   6篇
  1999年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1987年   2篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有308条查询结果,搜索用时 15 毫秒
11.
In this study, variations in the size distributions due to different assumptions for the coagulation kernel are investigated. In order to evaluate how the coagulation kernel influences the form of the particle size distribution and to describe the process of the Brownian coagulation, the Brownian coagulation kernel, including the van der Waals forces, is compared with the most frequently used coagulation coefficients. Retardation should be considered for interparticle interactions for particles larger than 1μm radius. However, for particle sizes larger than 0.1 μm, the Brownian kernel is not dominant, so the retardation effect can be ignored. The inclusion of the van der Waals forces in the Brownian coagulation kernel caused a faster coagulation process in the small particle size range. Taking account of the turbulent coagulation kernel, the turbulent coagulation kernel becomes more important when the turbulent intensity is higher. The turbulent coagulation kernel affects the large particle size range and ignoring the turbulent coagulation kernel will lead to overestimation of particle number concentration in model simulation. The results of this study indicate that the inclusion of van der Waals forces or the turbulent coagulation kernel in the total coagulation kernel impacts on the modeled particle size distributions and total particle number concentration.  相似文献   
12.
A centrifugal mill is a high-power intensity media mill that can be used for ultra-fine grinding, employing centrifugal forces generated by gyration of the axis of the mill tube in a circle. The mill charge motion is quite different depending on the ratio of the gyration diameter to the mill diameter (G / D ratio), varying from a motion similar to that of a conventional tumbling media mill to that of a vibration mill. In this study, a centrifugal mill was constructed with an arrangement where the gyration diameter could be readily adjusted. The batch grinding characteristics of three different minerals (limestone, talc and illite) in water with dispersing agent were investigated at various G / D ratios. It was found that the optimum G / D ratio in terms of the specific energy consumption to give a desired fineness of product was different for the three minerals. This was due to their different reactions to the breakage mechanisms provided by the mill charge motion at varying G / D ratios. The size distributions became progressively narrower at increased grinding times, and particles finer than about 0.1 μm were not detected even for prolonged grinding times. Measurement of specific surface areas indicated that this was not due to an artifact of the size measurements by laser diffractometry. This implies that there is a limitation in which particles finer than 0.1 μm are not produced under the conditions tested in this type of mill, but further investigation is needed for experimental verification of this limit of comminution.  相似文献   
13.
Summary A hydro-mechanical testing system, which is capable of measuring both the flow rates and the normal and shear displacement of a rock fracture, was built to investigate the hydraulic behaviour of rough tension fractures. Laboratory hydraulic tests in linear flow were conducted on rough rock fractures, artificially created using a splitter under various normal and shear loading. Prior to the tests, aperture distributions were determined by measuring the topography of upper and lower fracture surfaces using a laser profilometer. Experimental variograms of the initial aperture distributions were classified into four groups of geostatistical model, though the overall experimental variograms could be well fitted to the exponential model. The permeability of the rough rock fractures decayed exponentially with respect to the normal stress increase up to 5 MPa. Hydraulic behaviours during monotonic shear loading were significantly affected by the dilation occurring until the shear stress reached the peak strength. With the further dilation, the permeability of the rough fracture specimens increased more. However, beyond shear displacement of about 7 to 8 mm, permeability gradually reached a maximum threshold value. The combined effects of both asperity degradation and gouge production, which prohibited the subsequent enlargement of mean fracture aperture, mainly caused this phenomenon. Permeability changes during cyclic shear loading showed somewhat irregular variations, especially after the first shear loading cycle, due to the complex interaction from asperity degradations and production of gouge materials. The relation between hydraulic and mechanical apertures was analyzed to investigate the valid range of mechanical apertures to be applied to the cubic law. Received June 12, 2001; accepted February 26, 2002 Published online September 2, 2002  相似文献   
14.
A three-dimensional soil–structure–liquid interaction problem is numerically simulated in order to analyze the dynamic behavior of a base-isolated liquid storage tank subjected to seismic ground motion. A dynamic analysis of a liquid storage tank is carried out using a hybrid formulation, which combines the finite shell elements for structures and the boundary elements for liquid and soil. The system is composed of three parts: the liquid–structure interaction part, the soil–foundation interaction part, and the base-isolation part. In the liquid–structure interaction part, the tank structure is modeled using the finite elements and the liquid is modeled using the internal boundary elements, which satisfy the free surface boundary condition. In the soil–foundation interaction part, the foundation is modeled using the finite elements and the half-space soil media are modeled using the external boundary elements, which satisfy the radiation condition in the infinite domain. Finally, above two parts are connected with the base-isolation system to solve the system's behavior. Numerical examples are presented to demonstrate the accuracy of the developed method, and an earthquake response analysis is carried out to demonstrate the applicability of the developed technique. The properties of a real LNG tank located in the west coast of Korea are used. The effects of the ground and the base-isolation system on the behavior of the tank are analyzed.  相似文献   
15.
Despite the various opening models of the southwestern part of the East Sea (Japan Sea) between the Korean Peninsula and the Japan Arc, the continental margin of the Korean Peninsula remains unknown in crustal structure. As a result, continental rifting and subsequent seafloor spreading processes to explain the opening of the East Sea have not been adequately addressed. We investigated crustal and sedimentary velocity structures across the Korean margin into the adjacent Ulleung Basin from multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data. The Ulleung Basin shows crustal velocity structure typical of oceanic although its crustal thickness of about 10 km is greater than normal. The continental margin documents rapid transition from continental to oceanic crust, exhibiting a remarkable decrease in crustal thickness accompanied by shallowing of Moho over a distance of about 50 km. The crustal model of the margin is characterized by a high-velocity (up to 7.4 km/s) lower crustal (HVLC) layer that is thicker than 10 km under the slope base and pinches out seawards. The HVLC layer is interpreted as magmatic underplating emplaced during continental rifting in response to high upper mantle temperature. The acoustic basement of the slope base shows an igneous stratigraphy developed by massive volcanic eruption. These features suggest that the evolution of the Korean margin can be explained by the processes occurring at volcanic rifted margins. Global earthquake tomography supports our interpretation by defining the abnormally hot upper mantle across the Korean margin and in the Ulleung Basin.  相似文献   
16.
17.
The first ISPRS software contest for computer-assisted teaching, CATCON, took place on July 12, 1996 at the ISPRS Congress in Vienna. The main objective of the contest was to promote the development and dissemination of good/user-friendly software packages for computer-assisted teaching. Ten software packages and one data set from six countries were nominated. All the software and the data set were demonstrated at the contest, and prizes were given to three software packages and to one data set.  相似文献   
18.
To better understand geomagnetic storm generations by ICMEs, we consider the effect of substructures (magnetic cloud, MC, and sheath) and geometries (impact location of flux-rope at the Earth) of the ICMEs. We apply the toroidal magnetic flux-rope model to 59 CDAW CME–ICME pairs to identify their substructures and geometries, and select 20 MC-associated and five sheath-associated storm events. We investigate the relationship between the storm strength indicated by minimum Dst index \((\mathrm{Dst}_{\mathrm{min}})\) and solar wind conditions related to a southward magnetic field. We find that all slopes of linear regression lines for sheath-storm events are steeper (\({\geq}\,1.4\)) than those of the MC-storm events in the relationship between \(\mathrm{Dst}_{\mathrm{min}}\) and solar wind conditions, implying that the efficiency of sheath for the process of geomagnetic storm generations is higher than that of MC. These results suggest that different general solar wind conditions (sheaths have a higher density, dynamic and thermal pressures with a higher fluctuation of the parameters and higher magnetic fields than MCs) have different impact on storm generation. Regarding the geometric encounter of ICMEs, 100% (2/2) of major storms (\(\mathrm{Dst}_{\mathrm{min}} \leq -100~\mbox{nT}\)) occur in the regions at negative \(P_{Y}\) (relative position of the Earth trajectory from the ICME axis in the \(Y\) component of the GSE coordinate) when the eastern flanks of ICMEs encounter the Earth. We find similar statistical trends in solar wind conditions, suggesting that the dependence of geomagnetic storms on 3D ICME–Earth impact geometries is caused by asymmetric distributions of the geoeffective solar wind conditions. For western flank events, 80% (4/5) of the major storms occur in positive \(P_{Y}\) regions, while intense geoeffective solar wind conditions are not located in the positive \(P_{Y}\). These results suggest that the strength of geomagnetic storms depends on ICME–Earth impact geometries as they determine the solar wind conditions at Earth.  相似文献   
19.
Submarine groundwater discharge (SGD) plays an important role in coastal biogeochemical processes and hydrological cycles, particularly off volcanic islands in oligotrophic oceans. However, the spatial and temporal variations of SGD are still poorly understood owing to difficulty in taking rapid SGD measurements over a large scale. In this study, we used four airborne thermal infrared surveys (twice each during high and low tides) to quantify the spatiotemporal variations of SGD over the entire coast of Jeju Island, Korea. On the basis of an analytical model, we found a linear positive correlation between the thermal anomaly and squares of the groundwater discharge velocity and a negative exponential correlation between the anomaly and water depth (including tide height and bathymetry). We then derived a new equation for quantitatively estimating the SGD flow rates from thermal anomalies acquired at two different tide heights. The proposed method was validated with the measured SGD flow rates using a current meter at Gongcheonpo Beach. We believe that the method can be effectively applied for rapid estimation of SGD over coastal areas, where fresh groundwater discharge is significant, using airborne thermal infrared surveys.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号